Jatrorrhizine suppresses the antimicrobial resistance of methicillin-resistant Staphylococcus aureus

药根碱抑制耐甲氧西林金黄色葡萄球菌的耐药性

阅读:9
作者:Haiming Yu, Yuefei Wang, Xiaoqing Wang, Junjie Guo, Hui Wang, Hao Zhang, Fengxia Du

Abstract

Bacterial resistance to antimicrobial agents, including multidrug resistance, is an increasing problem in the treatment of infectious diseases. The development of resistance-modifying agents represents a potential strategy to alleviate the spread of bacterial resistance to antibiotics. A checkerboard microdilution assay was used to determine the synergy of jatrorrhizine and the antibiotic, norfloxacin (NFX). A bacterial ethidium bromide efflux assay, reverse transcription semi-quantitative polymerase chain reaction analysis and molecular docking study were performed. The three-dimensional structure of NorA multidrug efflux pump (NorA) was generated using a multiple threading approach. A murine thigh infection model was used to evaluate the in vivo synergistic effect. As a natural product, jatrorrhizine exhibited little antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) SA1199B with a minimum inhibitory concentration (MIC) of 64 mg/l. According to the investigations of the mechanism, jatrorrhizine significantly inhibited bacterial drug efflux and the expression of NorA in the mRNA level as it can bind to NorA by hydrogen-bonds, hydrophobic and electrostatic interactions. The in vivo synergistical bactericidal activity of jatrorrhizine and NFX against MRSA was confirmed in a murine thigh infection model. As a novel resistance-modifying agent, jatrorrhizine exhibited in vitro and in vivo synergistic activities against MRSA, and inhibited bacterial drug efflux. The effects were mediated by the suppression of NorA mRNA expression and/or interactions with NorA efflux pump. These data support the hypothesis that jatrorrhizine is a potential agent for therapeutic use in infections caused by MRSA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。