Multi-Focus Beamforming for Thermal Strain Imaging Using a Single Ultrasound Linear Array Transducer

使用单个超声线性阵列换能器进行热应变成像的多焦点波束形成

阅读:5
作者:Man M Nguyen, Xuan Ding, Steven A Leers, Kang Kim

Abstract

Ultrasound-induced thermal strain imaging (TSI) has been used successfully to identify lipid- and water-based tissues in atherosclerotic plaques in some research settings. However, TSI faces several challenges to be realized in clinics. These challenges include motion artifacts and displacement tracking accuracy, as well as limited heating capability, which contributes to low thermal strain signal-to-noise ratio, and a limited field of view. Our goal was to address the challenge in heating tissue in TSI. Current TSI systems use separate heating and imaging transducers, which require physical alignment of the heating and imaging beams and result in a bulky setup that limits in vivo operation. We evaluated a new design for heating beams that can be implemented on a linear array imaging transducer and can provide improved heating area and efficiency as compared with previous implementations. The heating beams designed were implemented with a clinical linear array imaging transducer connected to a research ultrasound platform. In vitro experiments using tissue-mimicking phantoms with no blood flow revealed that the new design resulted in an effective heating area of approximately 0.85 cm2 and a 0.3°C temperature rise in 2 s of heating, which compared well with in silico finite-element simulations. With the new heating beams, TSI was found to be able to detect a lipid-mimicking rubber inclusion with a diameter of 1 cm from the water-based gelatin background, with a strain contrast of 2.3 (+0.14% strain in the rubber inclusion and -0.06% strain in the gelatin background). Lastly, lipid-based tissue in a 1-cm-diameter human carotid endarterectomy (CEA) sample was identified in good agreement with histology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。