Myometrial progesterone hyper-responsiveness associated with increased risk of human uterine fibroids

子宫肌层孕酮高反应性与人类子宫肌瘤风险增加相关

阅读:7
作者:Mona Omar, Archana Laknaur, Ayman Al-Hendy, Qiwei Yang

Background

Uterine Fibroids (UFs) growth is ovarian steroid-dependent. Previous studies have shown that estrogen and progesterone play an important role in UF development. However, the mechanism underlying progesterone induced UF pathogenesis is largely unknown. In this study, we determined the expression of progesterone receptor and compared the expression level of progesterone-regulated genes (PRGs) in human myometrial cells from normal uteri (MyoN) versus uteri with UFs (MyoF) in response to progesterone.

Conclusion

These data support the idea that progesterone acts as contributing mechanism in the origin of UFs. Identification and analysis of these PRGs will help to further understand the role of progesterone in UF development.

Methods

Primary human myometrial cells were isolated from premenopausal patients with structurally normal uteri (PrMyoN). Primary human myometrial cells were also isolated from uterus with UFs (PrMyoF). Isolated tissues were excised at least 2 cm from the closest UFs lesion(s). Progesterone receptor (PR) expression was assessed using Western blot (WB). Expression levels of 15 PRGs were measured by qRT-PCR in PrMyoN and PrMyoF cells in the presence or absence of progesterone.

Results

WB analysis revealed higher expression levels of PR in PrMyoF cells as compared to PrMyoN cells. Furthermore, we compared the expression patterns of 15 UF-related PRGs in PrMyoN and PrMyoF primary cells in response to progesterone hormone treatment. Our studies demonstrated that five PRGs including Bcl2, FOXO1A, SCGB2A2, CYP26a1 and MMP11 exhibited significant progesterone-hyper-responsiveness in human PrMyoF cells as compared to PrMyoN cells (P < 0.05). Another seven PRGs, including CIDEC, CANP6, ADHL5, ALDHA1, MT1E, KIK6, HHI showed gain in repression in response to progesterone treatment (P > 0.05). Importantly, these genes play crucial roles in cell proliferation, apoptosis, cell cycle, tissue remodeling and tumorigenesis in the development of UFs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。