Antibacterial Low Molecular Weight Cationic Polymers: Dissecting the Contribution of Hydrophobicity, Chain Length and Charge to Activity

抗菌低分子量阳离子聚合物:剖析疏水性、链长和电荷对活性的贡献

阅读:9
作者:James L Grace, Johnny X Huang, Soon-Ee Cheah, Nghia P Truong, Matthew A Cooper, Jian Li, Thomas P Davis, John F Quinn, Tony Velkov, Michael R Whittaker

Abstract

The balance of cationicity and hydrophobicity can profoundly affect the performance of antimicrobial polymers. To this end a library of 24 cationic polymers with uniquely low degrees of polymerization was synthesized via Cu(0)-mediated polymerization, using three different cationic monomers and two initiators: providing two different hydrocarbon chain tail lengths (C2 and C12). The polymers exhibited structure-dependent antibacterial activity when tested against a selection of bacteria, viz, Staphylococcus aureus ATCC 29213, Klebsiella pneumoniae ATCC 13883, Acinetobacter baumannii ATCC 19606, and Pseudomonas aeruginosa ATCC 27853 as a representative palette of Gram-positive and Gram-negative ESKAPE pathogens. The five best-performing polymers were identified for additional testing against the polymyxin-resistant A. baumannii ATCC 19606R strain. Polymers having the lowest DP and a C12 hydrophobic tail were shown to provide the broadest antimicrobial activity against the bacteria panel studied as evidenced by lower minimum inhibitory concentrations (MICs). An optimal polymer composition was identified, and its mechanism of action investigated via membrane permeability testing against Escherichia coli. Membrane disruption was identified as the most probable mechanism for bacteria cell killing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。