Fabrication of Conductive, High Strength and Electromagnetic Interference (EMI) Shielded Green Composites Based on Waste Materials

利用废料制造导电、高强度、电磁干扰 (EMI) 屏蔽的绿色复合材料

阅读:5
作者:Azam Ali, Fiaz Hussain, Muhammad Farrukh Tahir, Majid Ali, Muhammad Zaman Khan, Blanka Tomková, Jiri Militky, Muhammad Tayyab Noman, Musaddaq Azeem

Abstract

Conventional conductive homopolymers such as polypyrrole and poly-3,4-ethylenedioxythiophene (PEDOT) have poor mechanical properties, for the solution to this problem, we tried to construct hybrid composites with higher electrical properties coupled with high mechanical strength. For this purpose, Kevlar fibrous waste, conductive carbon particles, and epoxy were used to make the conductive composites. Kevlar waste was used to accomplish the need for economics and to enhance the mechanical properties. At first, Kevlar fibrous waste was converted into a nonwoven web and subjected to different pretreatments (chemical, plasma) to enhance the bonding between fiber-matrix interfaces. Similarly, conductive carbon particles were converted into nanofillers by the action of ball milling to make them homogeneous in size and structure. The size and morphological structures of ball-milled particles were analyzed by Malvern zetasizer and scanning electron microscopy. In the second phase of the study, the conductive paste was made by adding the different concentrations of ball-milled carbon particles into green epoxy. Subsequently, composite samples were fabricated via a combination of prepared conductive pastes and a pretreated Kevlar fibers web. The influence of different concentrations of carbon particles into green epoxy resin for electrical conductivity was studied. Additionally, the electrical conductivity and electromagnetic shielding ability of conductive composites were analyzed. The waveguide method at high frequency (i.e., at 2.45 GHz) was used to investigate the EMI shielding. Furthermore, the joule heating response was studied by measuring the change in temperature at the surface of the conductive composite samples, while applying a different range of voltages. The maximum temperature of 55 °C was observed when the applied voltage was 10 V. Moreover, to estimate the durability and activity in service the ageing performance (mechanical strength and moisture regain) of developed composite samples were also analyzed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。