13 C-MFA helps to identify metabolic bottlenecks for improving malic acid production in Myceliophthora thermophila

13 C-MFA 有助于识别提高嗜热毁丝霉苹果酸产量的代谢瓶颈

阅读:6
作者:Junfeng Jiang, Defei Liu, Jingen Li, Chaoguang Tian, Yingping Zhuang, Jianye Xia

Background

Myceliophthora thermophila has been engineered as a significant cell factory for malic acid production, yet strategies to further enhance production remain unclear and lack rational guidance. 13C-MFA (13C metabolic flux analysis) offers a means to analyze cellular metabolic mechanisms and pinpoint critical nodes for improving product synthesis. Here, we employed 13C-MFA to investigate the metabolic flux distribution of a high-malic acid-producing strain of M. thermophila and attempted to decipher the crucial bottlenecks in the metabolic pathways.

Conclusions

This work elucidates and validates the key node for achieving high malic acid production in M. thermophila. We propose effective fermentation strategies and genetic modifications for enhancing malic acid production. These findings offer valuable guidance for the rational design of future cell factories aimed at improving malic acid yields.

Results

Compared with the wild-type strain, the high-Malic acid-producing strain M. thermophila JG207 exhibited greater glucose uptake and carbon dioxide evolution rates but lower oxygen uptake rates and biomass yields. Consistent with these phenotypes, the 13C-MFA results showed that JG207 displayed elevated flux through the EMP pathway and downstream TCA cycle, along with reduced oxidative phosphorylation flux, thereby providing more precursors and NADH for malic acid synthesis. Furthermore, based on the 13C-MFA results, we conducted oxygen-limited culture and nicotinamide nucleotide transhydrogenase (NNT) gene knockout experiments to increase the cytoplasmic NADH level, both of which were shown to be beneficial for malic acid accumulation. Conclusions: This work elucidates and validates the key node for achieving high malic acid production in M. thermophila. We propose effective fermentation strategies and genetic modifications for enhancing malic acid production. These findings offer valuable guidance for the rational design of future cell factories aimed at improving malic acid yields.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。