PLC1 mediated Cycloastragenol-induced stomatal movement by regulating the production of NO in Arabidopsis thaliana

PLC1通过调节拟南芥中NO的产生来介导环黄芪醇诱导的气孔运动

阅读:6
作者:Juantao Kong #, Rongshan Chen #, Ruirui Liu, Wei Wang, Simin Wang, Jinping Zhang, Ning Yang

Background

Astragalus grows mainly in drought areas. Cycloastragenol (CAG) is a tetracyclic triterpenoid allelochemical extracted from traditional Chinese medicine Astragalus root. Phospholipase C (PLC) and Gα-submit of the heterotrimeric G-protein (GPA1) are involved in many biotic or abiotic stresses. Nitric oxide (NO) is a crucial gas signal molecule in plants.

Conclusions

These results suggested that the NO accumulation was essential to induce stomatal closure under CAG treatment, and GPA1 and PLC1 acted upstream of NO.

Results

In this study, using the seedlings of Arabidopsis thaliana (A. thaliana), the results showed that low concentrations of CAG induced stomatal closure, and high concentrations inhibited stomatal closure. 30 µmol·L-1 CAG significantly increased the relative expression levels of PLC1 and GPA1 and the activities of PLC and GTP hydrolysis. The stomatal aperture of plc1, gpa1, and plc1/gpa1 was higher than that of WT under CAG treatment. CAG increased the fluorescence intensity of NO in guard cells. Exogenous application of c-PTIO to WT significantly induced stomatal aperture under CAG treatment. CAG significantly increased the relative expression levels of NIA1 and NOA1. Mutants of noa1, nia1, and nia2 showed that NO production was mainly from NOA1 and NIA1 by CAG treatment. The fluorescence intensity of NO in guard cells of plc1, gpa1, and plc1/gpa1 was lower than WT, indicating that PLC1 and GPA1 were involved in the NO production in guard cells. There was no significant difference in the gene expression of PLC1 in WT, nia1, and noa1 under CAG treatment. The gene expression levels of NIA1 and NOA1 in plc1, gpa1, and plc1/gpa1 were significantly lower than WT, indicating that PLC1 and GPA1 were positively regulating NO production by regulating the expression of NIA1 and NOA1 under CAG treatment. Conclusions: These results suggested that the NO accumulation was essential to induce stomatal closure under CAG treatment, and GPA1 and PLC1 acted upstream of NO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。