Simultaneous Removal of Cr(VI) and Phenol from Water Using Silica-di-Block Polymer Hybrids: Adsorption Kinetics and Thermodynamics

使用二氧化硅-二嵌段聚合物混合物同时去除水中的 Cr(VI) 和苯酚:吸附动力学和热力学

阅读:5
作者:Jia Qu, Qiang Yang, Wei Gong, Meilan Li, Baoyue Cao

Abstract

Heavy metal ions and organic pollutants often coexist in industrial effluents. In this work, silica-di-block polymer hybrids (SiO2-g-PBA-b-PDMAEMA) with two ratios (SiO2/BA/DMAEMA = 1/50/250 and 1/60/240) were designed and prepared for the simultaneous removal of Cr(VI) and phenol via a surface-initiated atom-transfer radical polymerization process using butyl methacrylate (BA) as a hydrophobic monomer and 2-(Dimethylamino)ethylmethacrylate (DMAEMA) as a hydrophilic monomer. The removal efficiency of Cr(VI) and phenol by the hybrids reached 88.25% and 88.17%, respectively. The sample with a larger proportion of hydrophilic PDMAEMA showed better adsorption of Cr(VI), and the sample with a larger proportion of hydrophobic PBA showed better adsorption of phenol. In binary systems, the presence of Cr(VI) inhibited the adsorption of phenol, yet the presence of phenol had a negligible effect on the adsorption of Cr(VI). Kinetics studies showed that the adsorption of Cr(VI) and phenol fitted the pseudo-second-order model well. Thermodynamic studies showed that the adsorption behavior of Cr(VI) and phenol were better described by the Langmuir adsorption isotherm equation, and the adsorption of Cr(VI) and phenol were all spontaneous adsorptions driven by enthalpy. The adsorbent still possessed good adsorption capacity for Cr(VI) and phenol after six adsorption-desorption cycles. These findings show that SiO2-g-PBA-b-PDMAEMA hybrids represent a satisfying adsorption material for the simultaneous removal of heavy metal ions and organic pollutants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。