CRISPR/Cas9 ribonucleoprotein (RNP) complex enables higher viability of transfected cells in genome editing of acute myeloid cells

CRISPR/Cas9 核糖核蛋白 (RNP) 复合物在急性髓系细胞基因组编辑中提高转染细胞的活力

阅读:7
作者:Qinquan Cheng #, Jing Xia #, Kaimin Wang #, Yue Zhang, Yan Chen, Qi Zhong, Xue Wang, Qi Wu

Background

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has become an increasingly vital tool for modifying gene expression in a variety of cell types. Lentiviral transduction and electroporation are the two main approaches used to deliver CRISPR/Cas9 into cells. However, the application of CRISPR/Cas9 in primary hematopoietic cells has been limited due to either low transduction efficiency in terms of viral-based delivery or difficult selection and enrichment of transfected and edited cells with respect to electroporation of CRISPR/Cas9 ribonucleoprotein (RNP).

Conclusions

Electroporation of fluorescence labeled CRISPR/Cas9 RNP is a perspective approach of gene editing. Our study provides an efficient and time-saving approach for genome-editing in hematopoietic cells.

Methods

In this study in vitro transcription was used to synthesize the guide RNA (gRNA), and plasmid pL-CRISPR.EFS.GFP was used as its DNA template. Then the in vitro transcribed gRNA was labeled with pCp-Cy5 via T4 ligase before incubating with Cas9 protein. Furthermore, CRISPR/Cas9 RNP was electroporated into primary CD34+ cells isolated from cord blood, and cell survival rate and transfection efficiency were calculated and compared to that of lentiviral transduction.

Results

Here, we show that electroporation of CRISPR/Cas9 RNP resulted in higher cell viability compared to electroporation of CRISPR/Cas9 all-in-one plasmid, providing important findings for further studies in hematology via CRISPR/Cas9 technology. Moreover, we established a method for labeling in vitro-transcribed gRNA with fluorophore and the sorted fluorescent cells displayed higher knockout efficiency than nonsorted transfected cells. Conclusions: Electroporation of fluorescence labeled CRISPR/Cas9 RNP is a perspective approach of gene editing. Our study provides an efficient and time-saving approach for genome-editing in hematopoietic cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。