Muscarinic acetylcholine type 1 receptor antagonism activates TRPM3 to augment mitochondrial function and drive axonal repair in adult sensory neurons

毒蕈碱型乙酰胆碱受体拮抗剂可激活 TRPM3,增强线粒体功能并驱动成人感觉神经元的轴突修复

阅读:15
作者:Sanjana Chauhan, Darrell R Smith, Shiva Shariati-Ievari, Abhay Srivastava, Sanjiv Dhingra, Michel Aliani, Paul Fernyhough

Conclusions

Activation of the TRPM3/CaMKKβ/AMPK pathway promoted collateral sprouting of sensory axons, positioning TRPM3 as a promising therapeutic target for peripheral neuropathy.

Methods

Dorsal root ganglion (DRG) neurons from adult control or diabetic rats were cultured and treated with TRPM3 agonists (CIM0216, pregnenolone sulfate) and M1R antagonists pirenzepine (PZ) or muscarinic toxin 7 (MT7). Ca2+ transients, mitochondrial respiration, AMP-activated protein kinase (AMPK) expression, and mitochondrial inner membrane potential were analyzed. The effect of M1R activation or blockade on TRPM3 activity mediated by phosphatidylinositol 4,5-bisphosphate (PIP2) was studied. Metabolic profiling of DRG neurons and human neuroblastoma SH-SY5Y cells was conducted.

Objective

Antagonism of the muscarinic acetylcholine type 1 receptor (M1R) promotes sensory axon repair and is protective in peripheral neuropathy, however, the mechanism remains elusive. We investigated the role of the heat-sensing transient receptor potential melastatin-3 (TRPM3) cation channel in M1R antagonism-mediated nerve regeneration and explored the potential of TRPM3 activation to facilitate axonal plasticity.

Results

M1R antagonism induced by PZ or MT7 increased Ca2+ influx in DRG neurons and was inhibited by TRPM3 antagonists or in the absence of extracellular Ca2+. TRPM3 agonists elevated Ca2+ levels, augmented mitochondrial respiration, AMPK activation and neurite outgrowth. M1R antagonism stimulated TRPM3 channel activity through inhibition of PIP2 hydrolysis to activate Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMPK, leading to augmented mitochondrial function and neuronal metabolism. DRG neurons with AAV-mediated shRNA knockdown of TRPM3 exhibited suppressed antimuscarinic drug-induced neurite outgrowth. TRPM3 agonists increased glycolysis and TCA cycle metabolites, indicating enhanced metabolism in DRG neurons and SH-SY5Y cells. Conclusions: Activation of the TRPM3/CaMKKβ/AMPK pathway promoted collateral sprouting of sensory axons, positioning TRPM3 as a promising therapeutic target for peripheral neuropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。