A genome scale transcriptional regulatory model of the human placenta

人类胎盘的基因组规模转录调控模型

阅读:4
作者:Alison Paquette, Kylia Ahuna, Yeon Mi Hwang, Jocelynn Pearl, Hanna Liao, Paul Shannon, Leena Kadam, Samantha Lapehn, Matthew Bucher, Ryan Roper, Cory Funk, James MacDonald, Theo Bammler, Priyanka Baloni, Heather Brockway, W Alex Mason, Nicole Bush, Kaja Z Lewinn, Catherine J Karr, John Stamatoyannop

Abstract

Gene regulation is essential to placental function and fetal development. We built a genome-scale transcriptional regulatory network (TRN) of the human placenta using digital genomic footprinting and transcriptomic data. We integrated 475 transcriptomes and 12 DNase hypersensitivity datasets from placental samples to globally and quantitatively map transcription factor (TF)-target gene interactions. In an independent dataset, the TRN model predicted target gene expression with an out-of-sample R2 greater than 0.25 for 73% of target genes. We performed siRNA knockdowns of four TFs and achieved concordance between the predicted gene targets in our TRN and differences in expression of knockdowns with an accuracy of >0.7 for three of the four TFs. Our final model contained 113,158 interactions across 391 TFs and 7712 target genes and is publicly available. We identified 29 TFs which were significantly enriched as regulators for genes previously associated with preterm birth, and eight of these TFs were decreased in preterm placentas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。