Inducing secondary metabolite production of Aspergillus sydowii through microbial co-culture with Bacillus subtilis

通过与枯草芽孢杆菌共培养诱导西多维曲霉次级代谢产物的产生

阅读:6
作者:Yu Sun, Wen-Cai Liu, Xuan Shi, Hai-Zhou Zheng, Zhi-Hui Zheng, Xin-Hua Lu, Yan Xing, Kai Ji, Mei Liu, Yue-Sheng Dong

Background

The co-culture strategy which mimics natural ecology by constructing an artificial microbial community is a useful tool to activate the biosynthetic gene clusters to generate new metabolites. However, the conventional method to study the co-culture is to isolate and purify compounds separated by HPLC, which is inefficient and time-consuming. Furthermore, the overall changes in the metabolite profile cannot be well characterized.

Conclusions

Co-culture led to global changes of the metabolite profile and is an effective way to induce the biosynthesis of novel natural products. The new approach in this study is one of the effective and relatively accurate methods to characterize the changes of metabolite profiles and to identify novel compounds in co-culture systems.

Results

A new approach which integrates computational programs, MS-DIAL, MS-FINDER and web-based tools including GNPS and MetaboAnalyst, was developed to analyze and identify the metabolites of the co-culture of Aspergillus sydowii and Bacillus subtilis. A total of 25 newly biosynthesized metabolites were detected only in co-culture. The structures of the newly synthesized metabolites were elucidated, four of which were identified as novel compounds by the new approach. The accuracy of the new approach was confirmed by purification and NMR data analysis of 7 newly biosynthesized metabolites. The bioassay of newly synthesized metabolites showed that four of the compounds exhibited different degrees of PTP1b inhibitory activity, and compound N2 had the strongest inhibition activity with an IC50 value of 7.967 μM. Conclusions: Co-culture led to global changes of the metabolite profile and is an effective way to induce the biosynthesis of novel natural products. The new approach in this study is one of the effective and relatively accurate methods to characterize the changes of metabolite profiles and to identify novel compounds in co-culture systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。