MEMS device for applying shear and tension to an epithelium combined with fluorescent live cell imaging

结合荧光活细胞成像对上皮施加剪切力和张力的 MEMS 装置

阅读:10
作者:Miguel A Garcia #, Ehsan Sadeghipour #, Leeya Engel, W James Nelson, Beth L Pruitt

Abstract

Mechanical forces play important roles in the biological function of cells and tissues. While numerous studies have probed the force response of cells and measured cell-generated forces, they have primarily focused on tensile, but not shear forces. Here, we describe the design, fabrication, and application of a silicon micromachined device that is capable of independently applying and sensing both tensile and shear forces in an epithelial cell monolayer. We integrated the device with an upright microscope to enable live cell brightfield and fluorescent imaging of cells over many hours following mechanical perturbation. Using devices of increasing stiffness and the same displacement input, we demonstrate that epithelia exhibit concomitant higher maximum resistive tensile forces and quicker force relaxation. In addition, we characterized the force response of the epithelium to cyclic shear loading. While the maximum resistive forces of epithelia under cyclic shear perturbation remained unchanged between cycles, cyclic loading led to faster relaxation of the resistive forces. The device presented here can be applied to studying the force response of other monolayer-forming cell types and is compatible with pharmacological perturbation of cell structures and functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。