Arsenic exposure, inflammation, and renal function in Bangladeshi adults: effect modification by plasma glutathione redox potential

孟加拉国成年人的砷暴露、炎症和肾功能:血浆谷胱甘肽氧化还原电位的影响修饰

阅读:4
作者:Brandilyn A Peters, Xinhua Liu, Megan N Hall, Vesna Ilievski, Vesna Slavkovich, Abu B Siddique, Shafiul Alam, Tariqul Islam, Joseph H Graziano, Mary V Gamble

Abstract

Exposure to arsenic (As) in drinking water is a widespread public health problem leading to increased risk for multiple outcomes such as cancer, cardiovascular disease, and possibly renal disease; potential mechanisms include inflammation and oxidative stress. We tested the hypothesis that As exposure is associated with increased inflammation and decreased estimated glomerular filtration rate (eGFR) and examined whether the effects of As were modified by plasma glutathione (GSH), glutathione disulfide (GSSG), or the reduction potential of the GSSG/2GSH pair (EhGSH). In a cross-sectional study of N = 374 Bangladeshi adults having a wide range of As exposure, we measured markers of inflammation (plasma C-reactive protein (CRP), α-1 acid glycoprotein (AGP)), renal function (eGFR), GSH, and GSSG. In covariate-adjusted models, a 10% increase in water As, urinary As adjusted for specific gravity (uAs), or blood As (bAs) was associated with a 0.74% (p = 0.01), 0.90% (p = 0.16), and 1.39% (p = 0.07) increase in CRP, respectively; there was no association with AGP. A 10% increase in uAs or bAs was associated with an average reduction in eGFR of 0.16 (p = 0.12) and 0.21 ml/min/1.73 m(2) (p = 0.08), respectively. In stratified analyses, the effect of As exposure on CRP was observed only in participants having EhGSH > median (uAs p(Wald) = 0.03; bAs p(Wald) = 0.05). This was primarily driven by stronger effects of As exposure on CRP in participants with lower plasma GSH. The effects of As exposure on eGFR were not modified significantly by EhGSH, GSH, or GSSG. These data suggest that participants having lower plasma GSH and a more oxidized plasma EhGSH are at increased risk for As-induced inflammation. Future studies should evaluate whether antioxidant treatment lowers plasma EhGSH and reduces risk for As-induced diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。