Hippocampal neurons in direct contact with astrocytes exposed to amyloid β25-35 exhibit reduced excitatory synaptic transmission

与暴露于淀粉样蛋白 β25-35 的星形胶质细胞直接接触的海马神经元表现出兴奋性突触传递减少

阅读:5
作者:Kohei Oyabu, Hiroki Kiyota, Kaori Kubota, Takuya Watanabe, Shutaro Katsurabayashi, Katsunori Iwasaki

Abstract

Amyloid β protein (Aβ) is closely related to the progression of Alzheimer's disease because senile plaques consisting of Aβ cause synaptic depression and synaptic abnormalities. In the central nervous system, astrocytes are a major glial cell type that contribute to the modulation of synaptic transmission and synaptogenesis. In this study, we examined whether astrocytes exposed to Aβ fragment 25-35 (Aβ25-35) affect synaptic transmission. We show that synaptic transmission by hippocampal neurons was inhibited by astrocytes exposed to Aβ25-35. The Aβ25-35-exposed astrocytes lowered excitatory postsynaptic release and the size of the readily releasable synaptic pool. The number of excitatory synapses was also reduced. However, the number of excitatory synapses was unchanged unless there was direct contact between Aβ25-35-exposed astrocytes and hippocampal neurons. These data indicate that direct contact between Aβ25-35-exposed astrocytes and neurons is critical for inhibiting synaptic transmission in the progression of Alzheimer's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。