Enhanced photothermal heating and combination therapy of gold nanoparticles on a breast cell model

增强光热加热和金纳米粒子联合治疗乳腺细胞模型

阅读:5
作者:Amna H Faid, Samia A Shouman, Yehia A Badr, Marwa Sharaky

Abstract

Multi-drug resistance (MDR) in addition to the damage to non-malignant normal cells are the most difficult in cancer treatment. Drug delivery and Plasmonic photothermal therapy based on the use of resonant metallic nanoparticles have developed as promising techniques to destroy cancer cells selectively. In the present work, gold nanoparticles (AuNPs) were synthesized using trisodium citrate. The prepared AuNPs have a small size of 14 ± 4 nm and exhibit high stability with Zeta potential - 18 mV, AuNPs showed higher photothermal heating efficiency compared to irradiation with a 532 nm laser alone on the breast cancer cell line (MCF-7). Treatment of MCF-7 cells with 0.125 mM AuNPs coupled with laser irradiation for 6 min was found to significantly reduce (34%) the cell viability compared to 5% obtained with AuNPs in the same concentration and 26% with laser irradiation for 6 min without AuNPs. Moreover, the prepared AuNPs were used as an anticancer drug carrier for Doxorubicin (Dox), upon loading Dox to AuNPs there was a slight increase in the particle size to 16 ± 2 nm, FT-IR spectroscopic results showing the binding of Dox to AuNPs was through the -NH group. The potential cytotoxicity of the DOX@AuNPs nanocomposite was significantly increased compared to free DOX on the MCF7 cell line with a decrease in IC50. All these results suggested the potential use of AuNPs as therapeutic photothermal agents and drug carriers in cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。