Improving production of Streptomyces griseus trypsin for enzymatic processing of insulin precursor

提高灰色链霉菌胰蛋白酶的产量以用于胰岛素前体的酶促加工

阅读:5
作者:Yunfeng Zhang, Qixing Liang, Chuanzhi Zhang, Juan Zhang, Guocheng Du, Zhen Kang

Background

Trypsin has many applications in food and pharmaceutical manufacturing. Although commercial trypsin is usually extracted from porcine pancreas, this source carries the risks of infectivity and immunogenicity. Microbial Streptomyces griseus trypsin (SGT) is a prime alternative because it possesses efficient hydrolysis activity without such risks. However, the remarkable hydrolysis efficiency of SGT causes autolysis, and five autolysis sites, R21, R32, K122, R153, and R201, were identified from its autolysate.

Conclusions

SGT protein could be a good source of trypsin for insulin production. As a result of the hydrolysates analysis and direct selection, the activity of the tbcf (K101A, R201V) mutant increased 1.5-fold. Furthermore, the production of trypsin was improved threefold by overexpressing chaperone protein in Pichia pastoris. Future studies should investigate the application of SGT to insulin and pharmaceutical manufacturing.

Results

The tbcf (K101A, R201V) mutant was screened by a directed selection approach for improved activity in flask culture (60.85 ± 3.42 U mL-1, increased 1.5-fold). From the molecular dynamics simulation, in the K101A/R201V mutant the distance between the catalytical residues D102 and H57 was shortened to 6.5 Å vs 7.0 Å in the wild type, which afforded the improved specific activity of 1527.96 ± 62.81 U mg-1. Furthermore, the production of trypsin was increased by 302.8% (689.47 ± 6.78 U mL-1) in a 3-L bioreactor, with co-overexpression of chaperones SSO2 and UBC1 in Pichia pastoris. Conclusions: SGT protein could be a good source of trypsin for insulin production. As a result of the hydrolysates analysis and direct selection, the activity of the tbcf (K101A, R201V) mutant increased 1.5-fold. Furthermore, the production of trypsin was improved threefold by overexpressing chaperone protein in Pichia pastoris. Future studies should investigate the application of SGT to insulin and pharmaceutical manufacturing.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。