Impact of glucose-dependent insulinotropic peptide on age-induced bone loss

葡萄糖依赖性胰岛素促泌肽对年龄引起的骨质流失的影响

阅读:5
作者:Ke-Hong Ding, Xing-Ming Shi, Qing Zhong, Baolin Kang, Ding Xie, Wendy B Bollag, Roni J Bollag, William Hill, Walter Washington, Qing-Sheng Mi, Karl Insogna, Norman Chutkan, Mark Hamrick, Carlos M Isales

Conclusions

Our data show that elevated GIP levels prevent age-related loss of bone mass and bone strength and suggest that age-related decreases in GIP receptor expression in BMSCs may play a pathophysiological role in this bone loss. We conclude that elevations in GIP may be an effective countermeasure to age-induced bone loss.

Methods

Changes in BMD, biomechanics, biomarkers of bone turnover, and bone histology were assessed in C57BL/6 GIP Tg(+) versus Tg(-) (littermate) mice between the ages of 1 and 24 mo of age. In addition, age-related changes in GIP receptor (GIPR) expression and GIP effects on differentiation of BMSCs were also assessed as potential causal factors in aging-induced bone loss.

Results

We report that bone mass and bone strength in GIP Tg(+) mice did not drop in a similar age-dependent fashion as in controls. In addition, biomarker measurements showed that GIP Tg(+) mice had increased osteoblastic activity compared with wildtype control mice. Finally, we report for the first time that BMSCs express GIPR, that the expression decreases in an age-dependent manner, and that stimulation of BMSCs with GIP led to increased osteoblastic differentiation. Conclusions: Our data show that elevated GIP levels prevent age-related loss of bone mass and bone strength and suggest that age-related decreases in GIP receptor expression in BMSCs may play a pathophysiological role in this bone loss. We conclude that elevations in GIP may be an effective countermeasure to age-induced bone loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。