Scaffolds for Chondrogenic Cells Cultivation Prepared from Bacterial Cellulose with Relaxed Fibers Structure Induced Genetically

基因诱导松弛纤维结构细菌纤维素制备软骨细胞培养支架

阅读:6
作者:Paulina Jacek, Marcin Szustak, Katarzyna Kubiak, Edyta Gendaszewska-Darmach, Karolina Ludwicka, Stanisław Bielecki

Abstract

Development of three-dimensional scaffolds mimicking in vivo cells' environment is an ongoing challenge for tissue engineering. Bacterial nano-cellulose (BNC) is a well-known biocompatible material with enormous water-holding capacity. However, a tight spatial organization of cellulose fibers limits cell ingrowth and restricts practical use of BNC-based scaffolds. The aim of this study was to address this issue avoiding any chemical treatment of natural nanomaterial. Genetic modifications of Komagataeibacter hansenii ATCC 23769 strain along with structural and mechanical properties characterization of obtained BNC membranes were conducted. Furthermore, the membranes were evaluated as scaffolds in in vitro assays to verify cells viability and glycosaminoglycan synthesis by chondrogenic ATDC5 cells line as well as RBL-2H3 mast cells degranulation. K. hansenii mutants with increased cell lengths and motility were shown to produce BNC membranes with increased pore sizes. Novel, BNC membranes with relaxed fiber structure revealed superior properties as scaffolds when compared to membranes produced by a wild-type strain. Obtained results confirm that a genetic modification of productive bacterial strain is a plausible way of adjustment of bacterial cellulose properties for tissue engineering applications without the employment of any chemical modifications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。