Computing simplicial representatives of homotopy group elements

计算同伦群元素的单纯代表

阅读:6
作者:Marek Filakovský, Peter Franek, Uli Wagner, Stephan Zhechev

Abstract

A central problem of algebraic topology is to understand the homotopy groups πd(X)πd(X)<math> <mrow><msub><mi>π</mi> <mi>d</mi></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> </mrow> </math> of a topological space X. For the computational version of the problem, it is well known that there is no algorithm to decide whether the fundamental group π1(X)<math> <mrow><msub><mi>π</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> </mrow> </math> of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with π1(X)<math> <mrow><msub><mi>π</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> </mrow> </math> trivial), compute the higher homotopy group πd(X)<math> <mrow><msub><mi>π</mi> <mi>d</mi></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> </mrow> </math> for any given d≥2<math><mrow><mi>d</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> . However, these algorithms come with a caveat: They compute the isomorphism type of πd(X)<math> <mrow><msub><mi>π</mi> <mi>d</mi></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> </mrow> </math> , d≥2<math><mrow><mi>d</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of πd(X)<math> <mrow><msub><mi>π</mi> <mi>d</mi></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> </mrow> </math> . Converting elements of this abstract group into explicit geometric maps from the d-dimensional sphere Sd<math><msup><mi>S</mi> <mi>d</mi></msup> </math> to X has been one of the main unsolved problems in the emerging field of computational homotopy theory. Here we present an algorithm that, given a simply connected space X, computes πd(X)<math> <mrow><msub><mi>π</mi> <mi>d</mi></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> </mrow> </math> and represents its elements as simplicial maps from a suitable triangulation of the d-sphere Sd<math><msup><mi>S</mi> <mi>d</mi></msup> </math> to X. For fixed d, the algorithm runs in time exponential in size(X)<math><mrow><mi>size</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> </math> , the number of simplices of X. Moreover, we prove that this is optimal: For every fixed d≥2<math><mrow><mi>d</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> , we construct a family of simply connected spaces X such that for any simplicial map representing a generator of πd(X)<math> <mrow><msub><mi>π</mi> <mi>d</mi></msub> <mrow><mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> </mrow> </math> , the size of the triangulation of Sd<math><msup><mi>S</mi> <mi>d</mi></msup> </math> on which the map is defined, is exponential in size(X)<math><mrow><mi>size</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo></mrow> </math> .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。