Hydrogen Sulfide Inhibits Autophagic Neuronal Cell Death by Reducing Oxidative Stress in Spinal Cord Ischemia Reperfusion Injury

硫化氢通过降低脊髓缺血再灌注损伤中的氧化应激来抑制自噬性神经元细胞死亡

阅读:7
作者:Lei Xie, Sifei Yu, Kai Yang, Changwei Li, Yu Liang

Abstract

Autophagy is upregulated in spinal cord ischemia reperfusion (SCIR) injury; however, its expression mechanism is largely unknown; moreover, whether autophagy plays a neuroprotective or neurodegenerative role in SCIR injury remains controversial. To explore these issues, we created an SCIR injury rat model via aortic arch occlusion. Compared with normal controls, autophagic cell death was upregulated in neurons after SCIR injury. We found that autophagy promoted neuronal cell death during SCIR, shown by a significant number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling- (TUNEL-) positive cells colabeled with the autophagy marker microtubule-associated protein 1 light chain 3, while the autophagy inhibitor 3-methyladenine reduced the number of TUNEL-positive cells and restored neurological and motor function. Additionally, we showed that oxidative stress was the main trigger of autophagic neuronal cell death after SCIR injury and N-acetylcysteine inhibited autophagic cell death and restored neurological and motor function in SCIR injury. Finally, we found that hydrogen sulfide (H2S) inhibited autophagic cell death significantly by reducing oxidative stress in SCIR injury via the AKT-the mammalian target of rapamycin (mTOR) pathway. These findings reveal that oxidative stress induces autophagic cell death and that H2S plays a neuroprotective role by reducing oxidative stress in SCIR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。