Quantitative phosphoproteomics reveals molecular pathway network in wheat resistance to stripe rust

定量磷酸化蛋白质组学揭示小麦抗条锈病的分子通路网络

阅读:11
作者:Pengfei Gan, Chunlei Tang, Yi Lu, Chenrong Ren, Hojjatollah Rabbani Nasab, Xufeng Kun, Xiaodong Wang, Liangzhuang Li, Zhensheng Kang, Xiaojie Wang, Jianfeng Wang

Abstract

Protein phosphorylation plays an important role in immune signaling transduction in plant resistance to pathogens. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), severely devastates wheat production. Nonetheless, the molecular mechanism of wheat resistance to stripe rust remains limited. In this study, quantitative phosphoproteomics was employed to investigate the protein phosphorylation changes in wheat challenged by Pst. A total of 1537 and 2470 differentially accumulated phosphoproteins (DAPs) were identified from four early infection stage (6, 12, 18 and 24 h post-inoculation) in incompatible and compatible wheat-Pst interactions respectively. KEGG analysis revealed that Oxidative Phosphorylation, Phosphatidylinositol Signaling, and MAPK signaling processes are distinctively enriched in incompatible interaction, while Biosynthesis of secondary metabolites and RNA degradation process were significantly enriched in compatible interactions. In particular, abundant changes in phosphorylation levels of chloroplast proteins were identified, suggesting the regulatory role of photosynthesis in wheat-Pst interaction, which is further emphasized by protein-protein interaction (PPI) network analysis. Motif-x analysis identified [xxxxSPxxxx] motif, likely phosphorylation sites for defensive response-related kinases, and a new [xxxxSSxxxx] motif significantly enriched in incompatible interaction. The results shed light on the early phosphorylation events contributing to wheat resistance against Pst. Moreover, our study demonstrated that the phosphorylation levels of Nucleoside diphosphate kinase TaNAPK1 are upregulated at 12 hpi with CYR23 and at 24 hpi with CYR31. Transient silencing of TaNAPK1 was able to attenuate wheat resistance to CYR23 and CYR31. Our study provides new insights into the mechanisms underlying Pst-wheat interactions and may provide database to find potential targets for the development of new resistant varieties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。