Assessment of the Therapeutic Effectiveness of Glutathione-Enhanced Mesenchymal Stem Cells in Rat Models of Chronic Bladder Ischemia-Induced Overactive Bladder and Detrusor Underactivity

谷胱甘肽增强间充质干细胞对慢性膀胱缺血诱发的膀胱过度活动症和逼尿肌活动低下的大鼠模型的治疗效果评估

阅读:17
作者:Jung Hyun Shin, Hwan Yeul Yu, Hyungu Kwon, Hong Duck Yun, Chae-Min Ryu, Dong-Myung Shin, Myung-Soo Choo

Abstract

Overactive bladder (OAB) and detrusor underactivity (DUA) are representative voiding dysfunctions with a chronic nature and limited treatment modalities, and are ideal targets for stem cell therapy. In the present study, we investigated the therapeutic efficacy of human mesenchymal stem cells (MSCs) with a high antioxidant capacity generated by the Primed Fresh OCT4 (PFO) procedure in chronic bladder ischemia (CBI)-induced OAB and DUA rat models. Sixteen-week-old male Sprague-Dawley rats were divided into three groups (sham, OAB or DUA, and stem cell groups; n=10, respectively). CBI was induced by bilateral iliac arterial injury (OAB, 10 times; DUA, 30 times) followed by a 1.25% cholesterol diet for 8 weeks. Seven weeks after injury, rats in the stem cell and other groups were injected with 1╳106 PFO-MSCs and phosphate buffer, respectively. One week later, bladder function was analyzed by awake cystometry and bladders were harvested for histological analysis. CBI with a high-fat diet resulted in atrophy of smooth muscle and increased collagen deposits correlating with reduced detrusor contractility in both rat models. Arterial injury 10 and 30 times induced OAB (increased number of non-voiding contractions and shortened micturition interval) and DUA (prolonged micturition interval and increased residual volume), respectively. Injection of PFO-MSCs with the enhanced glutathione dynamics reversed both functional and histological changes; it restored the contractility, micturition interval, residual volume, and muscle layer, with reduced fibrosis. CBI followed by a high-fat diet with varying degrees of arterial injury induced OAB and DUA in rats. In addition, PFO-MSCs alleviated functional and histological changes in both rat models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。