Clozapine-N-oxide protects dopaminergic neurons against rotenone-induced neurotoxicity by preventing ferritinophagy-mediated ferroptosis

氯氮平-N-氧化物通过阻止铁蛋白吞噬介导的铁死亡保护多巴胺能神经元免受鱼藤酮诱导的神经毒性

阅读:15
作者:Qingquan Sun, Yan Wang, Liyan Hou, Sheng Li, Jau-Shyong Hong, Qingshan Wang, Jie Zhao

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder, yet treatment options are limited. Clozapine (CLZ), an antipsychotic used for schizophrenia, has potential as a PD treatment. CLZ and its metabolite, Clozapine-N-Oxide (CNO), show neuroprotective effects on dopaminergic neurons, with mechanisms needing further investigation. This study aimed to confirm the neuroprotective effects of CLZ and CNO in a rotenone-induced mouse model and further explore the underlying mechanisms of CNO-afforded protection. Gait pattern and rotarod activity evaluations showed motor impairments in rotenone-exposed mice, with CLZ or CNO administration ameliorating behavioral deficits. Cell counts and biochemical analysis demonstrated CLZ and CNO's effectiveness in reducing rotenone-induced neurodegeneration of dopaminergic neurons in the nigrostriatal system in mice. Mechanistic investigations revealed that CNO suppressed rotenone-induced ferroptosis of dopaminergic neurons by rectifying iron imbalances, curtailing lipid peroxidation, and mitigating mitochondrial morphological changes. CNO also reversed autolysosome and ferritinophagic activation in rotenone-exposed mice. SH-SY5Y cell cultures validated these findings, indicating ferritinophage involvement, where CNO-afforded protection was diminished by ferritinophagy enhancers. Furthermore, knockdown of NCOA4, a crucial cargo receptor for ferritin degradation in ferritinophagy, hampered rotenone-induced ferroptosis and NCOA4 overexpression countered the anti-ferroptotic effects of CNO. Whereas, iron-chelating agents and ferroptosis enhancers had no effect on the anti-ferritinophagic effects of CNO in rotenone-treated cells. In summary, CNO shielded dopaminergic neurons in the rotenone-induced PD model by modulating NCOA4-mediated ferritinophagy, highlighting a potential therapeutic pathway for PD treatment. This research provided insights into the role of NCOA4 in ferroptosis and suggested new approaches for PD therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。