Biological removal of benzalkonium chlorides from wastewater by immobilized cells of Pseudomonas sp. BIOMIG1 in an up-flow packed bed reactor

固定化假单胞菌 BIOMIG1 细胞在上流式填料床反应器中生物去除废水中的苯扎氯铵

阅读:7
作者:Fahri Koray Sakarya, Berat Zeki Haznedaroglu, Ulas Tezel

Abstract

Quaternary ammonium compounds (QACs) are active ingredients of many disinfectants used against SARS-CoV-2 to control the transmission of the virus through human-contact surfaces. As a result, QAC consumption has increased more than twice during the pandemic. Consequently, the concentration of QACs in wastewater and receiving environments may increase. Due to their antimicrobial activity, high levels of QACs in wastewater may cause malfunctioning of biological treatment systems resulting in inadequate treatment of wastewater. In this study, a biocatalyst was produced by entrapping Pseudomonas sp. BIOMIG1 capable of degrading QACs in calcium alginate. Bioactive 3-mm alginate beads degraded benzalkonium chlorides (BACs), a group of QACs, with a rate of 0.47 µM-BACs/h in shake flasks. A bench-scale continuous up-flow reactor packed with BIOMIG1-beads was operated over one and a half months with either synthetic wastewater or secondary effluent containing 2-20 µM BACs at an empty bed contact time (EBCT) ranging between 0.6 and 4.7 h. Almost complete BAC removal was achieved from synthetic and real wastewater at and above 1.2 h EBCT without aeration and effluent recirculation. The microbial community in beads dominantly composed of BIOMIG1 with trace number of Achromobacter spp. after the operation of the reactor with the real wastewater, suggesting that BIOMIG1 over-competed native wastewater bacteria during the operation. This reactor system offers a low cost and robust treatment of QACs in wastewater. It can be integrated to conventional treatment systems for efficient removal of QACs from the wastewater, especially during the pandemic period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。