Escherichia coli Uses a Dedicated Importer and Desulfidase To Ferment Cysteine

大肠杆菌利用专用进口商和脱硫酶发酵半胱氨酸

阅读:2
作者:Yidan Zhou, James A Imlay

Abstract

CyuA of Escherichia coli is an inducible desulfidase that degrades cysteine to pyruvate, ammonium, and hydrogen sulfide. Workers have conjectured that its role may be to defend bacteria against the toxic effects of cysteine. However, cyuA sits in an operon alongside cyuP, which encodes a cysteine importer that seems ill suited to protecting the cell from environmental cysteine. In this study, transport measurements established that CyuP is a cysteine-specific, high-flux importer. The concerted action of CyuP and CyuA allowed anaerobic E. coli to employ cysteine as either the sole nitrogen or the sole carbon/energy source. CyuA was essential for this function, and although other transporters can slowly bring cysteine into the cell, CyuP-proficient cells outcompeted cyuP mutants. Cells immediately consumed the ammonia and pyruvate that CyuA generated, with little or none escaping from the cell. The expression of the cyuPA operon depended upon both CyuR, a cysteine-activated transcriptional activator, and Crp. This control is consistent with its catabolic function. In fact, the cyuPA operon sits immediately downstream of the thrABCDEFG operon, which allows the analogous fermentation of serine and threonine; this arrangement suggests that this gene cluster may have moved jointly through the anaerobic biota, providing E. coli with the ability to ferment a limited set of amino acids. Interestingly, both the cyu- and thr-encoded pathways depend upon oxygen-sensitive enzymes and cannot contribute to amino acid catabolism in oxic environments. IMPORTANCE Cysteine is a singularly reactive amino acid; in high concentrations, it can disrupt cytoplasmic metabolism. This phenomenon prompted the view that the cyuPA operon of Escherichia coli serves to detoxify cysteine by degrading it. The present study indicates, however, that the natural purpose of that operon is to provide a concise route of cysteine fermentation. CyuP is the first dedicated cysteine importer to be functionally validated among the bacteria, and CyuA constitutes a cysteine desulfidase. Intriguingly, the CyuA iron-sulfur cofactor is inactivated by oxygen so that cysteine is, uniquely, a carbon source that is usable only in anoxic environments. Presumably, this constraint is tolerable because cysteine is scarce in oxic habitats. It also avoids sulfide release, which could interfere with aerobic respiration. Cysteine joins just serine and threonine as amino acids that E. coli is known to ferment, underscoring that this facultative bacterium is oriented toward the fermentation of carbohydrates.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。