A comparative study of bone bioactivity and osteogenic potential of different bioceramics in methacrylated collagen hydrogels

甲基丙烯酸酯化胶原水凝胶中不同生物陶瓷的骨生物活性和成骨潜力的比较研究

阅读:10
作者:Nashaita Y Patrawalla, Nilabh S Kajave, Vipuil Kishore

Abstract

Biomimetic scaffolds composed of bioactive ceramic-based materials incorporated within a polymeric framework have shown immense promise for use in bone tissue engineering (BTE) applications. However, studies on direct comparison of the efficacy of different bioceramics on bone bioactivity and osteogenic differentiation are lacking. Herein, we performed an in vitro direct comparison of three different bioceramics-Bioglass 45S5 (BG), Laponite XLG (LAP), and β-Tricalcium Phosphate (TCP)-on the physical properties and bone bioactivity of methacrylated collagen (CMA) hydrogels (10% w/w bioceramic:CMA). In addition, human MSCs (hMSCs) were encapsulated in bioceramic-laden CMA hydrogels and the effect of different bioceramics on osteogenic differentiation of hMSCs was investigated in two different culture medium-osteoconductive (without dexamethasone [DEX]) and osteoinductive (with DEX). Results showed that the stability of CMA hydrogels was maintained upon bioceramic addition. Compression testing revealed that BG incorporation significantly decreased (p < 0.05) the modulus of photochemically crosslinked CMA hydrogels. Incubation of TCP-CMA and LAP-CMA hydrogels in simulated body fluid showed deposition of hydroxycarbonate apatite layer on the surface indicating that these hydrogels may be more bone bioactive than BG-CMA and CMA only hydrogels. Cell cytoskeleton staining results showed greater cell spreading in TCP-CMA hydrogels. Furthermore, TCP incorporation significantly increased alkaline phosphatase activity (ALP; p < 0.05) in hMSCs. Together, these results indicate that TCP has superior osteogenic potential compared with BG and LAP and hence should be considered as a bioceramic of preferred choice for use in the biomimetic design of cell-laden hydrogels for BTE applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。