Molecular profiling reveals similarities and differences between primitive subsets of hematopoietic cells generated in vitro from human embryonic stem cells and in vivo during embryogenesis

分子分析揭示了人类胚胎干细胞体外产生的造血细胞原始亚群与胚胎发生过程中体内产生的造血细胞原始亚群之间的相似性和差异性

阅读:8
作者:Giorgia Salvagiotto, Yun Zhao, Maxim Vodyanik, Victor Ruotti, Ronald Stewart, Marco Marra, James Thomson, Connie Eaves, Igor Slukvin

Conclusion

These data suggest that primitive hematopoietic cells are generated from hESCs in vitro by processes similar to those operative during human embryogenesis in vivo, although some differences were also detected.

Methods

We prepared long serial analysis of gene expression libraries from lin-CD34+CD43+CD45- and lin-CD34+CD43+CD45+ subsets of primitive hematopoietic cells derived in vitro from hESCs, sequenced them to a depth of 200,000 tags and compared their content with similar libraries prepared from highly purified populations of very primitive human fetal liver and cord blood hematopoietic cells.

Objective

Cellular and molecular changes that occur during the genesis of the hematopoietic system and hematopoietic stem cells in the human embryo are mostly inaccessible to study and remain poorly understood. To address this gap we have exploited the human embryonic stem cell (hESC) system to molecularly characterize the global transcriptomes of the two functionally discreet and phenotypically separable populations of multipotent hematopoietic cells that first appear when hESCs are induced to differentiate on OP9 cells. Materials and

Results

Comparison of libraries obtained from hESC-derived lin-CD34+CD43+CD45- and lin-CD34+CD43+CD45+ revealed differences in their expression of genes associated with myeloid development, cellular biosynthetic processes, and cell-cycle regulation. Further comparisons with analogous data for primitive hematopoietic cells isolated from first-trimester human fetal liver and newborn cord blood showed an apparent similarity between the transcriptomes of the most primitive hESC- and in vivo-derived populations, with the main differences involving genes that regulate HSC self-renewal and homing, chromatin remodeling, AP1 transcription complex genes, and noncoding RNAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。