Beyond cleaved small RNA targets: unraveling the complexity of plant RNA degradome data

超越切割的小 RNA 靶标:揭示植物 RNA 降解数据的复杂性

阅读:8
作者:Cheng-Yu Hou, Ming-Tsung Wu, Shin-Hua Lu, Yue-Ie Hsing, Ho-Ming Chen

Background

Degradation is essential for RNA maturation, turnover, and quality control. RNA degradome sequencing that integrates a modified 5'-rapid amplification of cDNA ends protocol with next-generation sequencing technologies is a high-throughput approach for profiling the 5'-end of uncapped RNA fragments on a genome-wide scale. The primary application of degradome sequencing has been to identify the truncated transcripts that result from endonucleolytic cleavage guided by microRNAs or small interfering RNAs. As many pathways are involved in RNA degradation, degradome data should contain other RNA species besides the cleavage remnants of small RNA targets. Nevertheless, no systematic approaches have been established to explore the hidden complexity of plant degradome.

Conclusions

The complexity of plant RNA degradome data revealed in this study may contribute to the alternative applications of degradome in RNA research.

Results

Through analyzing Arabidopsis and rice RNA degradome data, we recovered 11 short motifs adjacent to predominant and abundant uncapped 5'-ends. Uncapped ends associated with several of these short motifs were more prevalent than those targeted by most miRNA families especially in the 3' untranslated region of transcripts. Through genome-wide analysis, five motifs showed preferential accumulation of uncapped 5'-ends at the same position in Arabidopsis and rice. Moreover, the association of uncapped 5'-ends with a CA-repeat motif and a motif recognized by Pumilio/Fem-3 mRNA binding factor (PUF) proteins was also found in non-plant species, suggesting that common mechanisms are present across species. Based on these motifs, potential sources of RNA ends that constitute degradome data were proposed and further examined. The 5'-end of small nucleolar RNAs could be precisely captured by degradome sequencing. Position-specific enrichment of uncapped 5'-ends was seen upstream of motifs recognized by several RNA binding proteins especially for the binding site of PUF proteins. False uncapped 5'-ends produced from capped transcripts through non-specific PCR amplification were common artifacts among degradome datasets. Conclusions: The complexity of plant RNA degradome data revealed in this study may contribute to the alternative applications of degradome in RNA research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。