Hydroxyphenylation of Histone Lysines: Post-translational Modification by Quinone Imines

组蛋白赖氨酸的羟苯基化:醌亚胺的翻译后修饰

阅读:7
作者:Kodihalli C Ravindra, Laura J Trudel, John S Wishnok, Gerald N Wogan, Steven R Tannenbaum, Paul L Skipper

Abstract

Monocyclic aromatic amines are widespread environmental contaminants with multiple sources such as combustion products, pharmaceuticals, and pesticides. Their phenolic metabolites are converted intracellularly to electrophilic quinone imines upon autoxidation and can embed in the cellular matrix through a transimination reaction that leaves a redox-active residue as a substituent of lysine side-chain amino groups. To demonstrate the occurrence of this process within the cellular nucleus, Chinese hamster ovary AA8 cells were treated with the para-phenol of 3,5-dimethylamine, after which the histone proteins were isolated, derivatized, and subjected to tryptic digestion. The resulting peptides were analyzed by tandem mass spectrometry to determine which lysines were modified. Nine residues in histones H2A, H2B, and H4 were identified; these were located in histone tails, close to where DNA makes contact with the nuclear core particle, elsewhere on the protein surface, and deep within the core. Kinetics of disappearance of the modified lysines in cultured cells was determined using isotope-dilution mass spectrometry. AA8 cells were also transfected with the genetically encoded hydrogen peroxide biosensor HyPer in constructs that lead to expression of HyPer in different cellular compartments. Challenging the resulting cells with the dimethylaminophenol resulted in sustained fluorescence emission in each of the compartments, demonstrating ongoing production of H2O2. The kinetics of modified lysine loss determined by mass spectrometry was consistent with persistence of HyPer fluorescence emission. We conclude that the para-phenol of 3,5-dimethylamine can become stably integrated into the histone proteins, which are minimally repaired, if at all, and function as a persistent source of intracellular H2O2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。