Metformin's antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization

二甲双胍的抗肿瘤和抗血管生成活性是通过扭曲巨噬细胞极化来介导的

阅读:5
作者:Ji-Chang Wang, Xin Sun, Qiang Ma, Gui-Feng Fu, Long-Long Cong, Hong Zhang, De-Fu Fan, Jun Feng, Shao-Ying Lu, Jian-Lin Liu, Guang-Yue Li, Pei-Jun Liu

Abstract

Beneficial effects of metformin on cancer risk and mortality have been proved by epidemiological and clinical studies, thus attracting research interest in elucidating the underlying mechanisms. Recently, tumour-associated macrophages (TAMs) appeared to be implicated in metformin-induced antitumour activities. However, how metformin inhibits TAMs-induced tumour progression remains ill-defined. Here, we report that metformin-induced antitumour and anti-angiogenic activities were not or only partially contributed by its direct inhibition of functions of tumour and endothelial cells. By skewing TAM polarization from M2- to M1-like phenotype, metformin inhibited both tumour growth and angiogenesis. Depletion of TAMs by clodronate liposomes eliminated M2-TAMs-induced angiogenic promotion, while also abrogating M1-TAMs-mediated anti-angiogenesis, thus promoting angiogenesis in tumours from metformin treatment mice. Further in vitro experiments using TAMs-conditioned medium and a coculture system were performed, which demonstrated an inhibitory effect of metformin on endothelial sprouting and tumour cell proliferation promoted by M2-polarized RAW264.7 macrophages. Based on these results, metformin-induced inhibition of tumour growth and angiogenesis is greatly contributed by skewing of TAMs polarization in microenvironment, thus offering therapeutic opportunities for metformin in cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。