Inhibitory interneurons regulate phasic activity of noradrenergic neurons in the mouse locus coeruleus and functional implications

抑制性中间神经元调节小鼠蓝斑去甲肾上腺素能神经元的相位活动及其功能意义

阅读:4
作者:Chao-Cheng Kuo, Jung-Chien Hsieh, Hsing-Chun Tsai, Yu-Shan Kuo, Hau-Jie Yau, Chih-Cheng Chen, Ruei-Feng Chen, Hsiu-Wen Yang, Ming-Yuan Min

Abstract

Key points: The locus coeruleus (LC) contains noradrenergic (NA) neurons that respond to novel stimuli in the environment with phasic activation to initiate an orienting response; phasic LC activation is also triggered by stimuli, representing the outcome of task-related decision processes, to facilitate ensuing behaviours and help optimize task performance. Here, we report that LC-NA neurons exhibit bursts of action potentials in vitro resembling phasic LC activation in vivo, and the activity is gated by inhibitory interneurons (I-INs) located in the peri-LC. We also observe that inhibition of peri-LC I-INs enhances prepulse inhibition and axons from cortical areas that play important roles in evaluating the cost/reward of a stimulus synapse on both peri-LC I-INs and LC-NA neurons. The results help us understand the cellular mechanisms underlying the generation and regulation of phasic LC activation with a focus on the role of peri-LC I-INs. Noradrenergic (NA) neurons in the locus coeruleus (LC) have global axonal projection to the brain. These neurons discharge action potentials phasically in response to either novel stimuli in the environment to initiate an orienting behaviour or stimuli representing the outcome of task-related decision processes to facilitate ensuing behaviours and help optimize task performance. Nevertheless, the cellular mechanisms underlying the generation and regulation of phasic LC activation remain unknown. We report here that LC-NA neurons recorded in brain slices exhibit bursts of action potentials that resembled the phasic activation-pause profile observed in animals. The activity was referred to as phasic-like activity (PLA) and was suppressed and enhanced by blocking excitatory and inhibitory synaptic transmissions, respectively. These results suggest the existence of a local circuit to drive PLA, and the activity could be regulated by the excitatory-inhibitory balance of the circuit. In support of this notion, we located a population of inhibitory interneurons (I-INs) in the medial part of the peri-LC that exerted feedforward inhibition of LC-NA neurons through GABAergic and glycinergic transmissions. Selective inhibition of peri-LC I-INs with chemogenetic methods could enhance PLA in brain slices and increase prepulse inhibition in animals. Moreover, axons from the orbitofrontal and prelimbic cortices, which play important roles in evaluating the cost/reward of a stimulus, synapse on both peri-LC I-INs and LC-NA neurons. These observations demonstrate functional roles of peri-LC I-INs in integrating inputs of the frontal cortex onto LC-NA neurons and gating the phasic LC output.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。