Generalized entropies and logarithms and their duality relations

广义熵和对数及其对偶关系

阅读:7
作者:Rudolf Hanel, Stefan Thurner, Murray Gell-Mann

Abstract

For statistical systems that violate one of the four Shannon-Khinchin axioms, entropy takes a more general form than the Boltzmann-Gibbs entropy. The framework of superstatistics allows one to formulate a maximum entropy principle with these generalized entropies, making them useful for understanding distribution functions of non-Markovian or nonergodic complex systems. For such systems where the composability axiom is violated there exist only two ways to implement the maximum entropy principle, one using escort probabilities, the other not. The two ways are connected through a duality. Here we show that this duality fixes a unique escort probability, which allows us to derive a complete theory of the generalized logarithms that naturally arise from the violation of this axiom. We then show how the functional forms of these generalized logarithms are related to the asymptotic scaling behavior of the entropy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。