Unique self-palmitoylation activity of the transport protein particle component Bet3: a mechanism required for protein stability

转运蛋白颗粒成分 Bet3 的独特自棕榈酰化活性:蛋白质稳定性所需的机制

阅读:11
作者:Daniel Kümmel, Udo Heinemann, Michael Veit

Abstract

Bet3 is a component of the transport protein particle complex involved in vesicular trafficking to and through the Golgi complex. X-ray structural analysis of human and mouse Bet3 revealed a hydrophobic tunnel inside the protein, which is occupied by a fatty acid linked to cysteine-68. We show here that Bet3 has strong self-palmitoylating activity. Incubation of purified Bet3 with [3H]palmitoyl-CoA (Pal-CoA) leads to a rapid and stoichiometric attachment of fatty acids to cysteine-68. Bet3 has an intrinsic affinity for Pal-CoA, and the palmitoylation reaction occurs at physiological pH values and Pal-CoA concentrations. Moreover, Bet3 is also efficiently palmitoylated at cysteine-68 inside vertebrate cells. Palmitoylation can occur late after Bet3 synthesis, but once the fatty acids are bound they are not removed, not even by disassembly of the Golgi complex. Narrowing the hydrophobic tunnel by exchange of alanine-82 with bulkier amino acids inhibits palmitoylation, both in vitro and inside cells, indicating that the fatty acid must insert into the tunnel for stable attachment. Finally, we show that palmitoylation of Bet3 plays a structural role. CD spectroscopy reveals that chemically deacylated Bet3 has a reduced melting temperature. As a consequence of its structural defect nonacylated Bet3 does not bind to TPC6, a further subunit of the transport protein particle complex, and is degraded inside cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。