Parkinson's disease risk genes act in glia to control neuronal α-synuclein toxicity

帕金森病风险基因在神经胶质细胞中起作用,控制神经元 α-突触核蛋白的毒性

阅读:9
作者:Abby L Olsen, Mel B Feany

Abstract

Idiopathic Parkinson's disease is the second most common neurodegenerative disease and is estimated to be approximately 30% heritable. Genome wide association studies have revealed numerous loci associated with risk of development of Parkinson's disease. The majority of genes identified in these studies are expressed in glia at either similar or greater levels than their expression in neurons, suggesting that glia may play a role in Parkinson's disease pathogenesis. The role of individual glial risk genes in Parkinson's disease development or progression is unknown, however. We hypothesized that some Parkinson's disease risk genes exert their effects through glia. We developed a Drosophila model of α-synucleinopathy in which we can independently manipulate gene expression in neurons and glia. Human wild type α-synuclein is expressed in all neurons, and these flies develop the hallmarks of Parkinson's disease, including motor impairment, death of dopaminergic and other neurons, and α-synuclein aggregation. In these flies, we performed a candidate genetic screen, using RNAi to knockdown 14 well-validated Parkinson's disease risk genes in glia and measuring the effect on locomotion in order to identify glial modifiers of the α-synuclein phenotype. We identified 4 modifiers: aux, Lrrk, Ric, and Vps13, orthologs of the human genes GAK, LRRK2, RIT2, and VPS13C, respectively. Knockdown of each gene exacerbated neurodegeneration as measured by total and dopaminergic neuron loss. Knockdown of each modifier also increased α-synuclein oligomerization. These results suggest that some Parkinson's disease risk genes exert their effects in glia and that glia can influence neuronal α-synuclein proteostasis in a non-cell-autonomous fashion. Further, this study provides proof of concept that our novel Drosophila α-synucleinopathy model can be used to study glial modifier genes, paving the way for future large unbiased screens to identify novel glial risk factors that contribute to PD risk and progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。