Rex in Caldicellulosiruptor bescii: Novel regulon members and its effect on the production of ethanol and overflow metabolites

Caldicellulosiruptor bescii 中的 Rex:新型调控子成员及其对乙醇和溢流代谢物产生的影响

阅读:4
作者:Kyle Sander, Daehwan Chung, Doug Hyatt, Janet Westpheling, Dawn M Klingeman, Miguel Rodriguez Jr, Nancy L Engle, Timothy J Tschaplinski, Brian H Davison, Steven D Brown

Abstract

Rex is a global redox-sensing transcription factor that senses and responds to the intracellular [NADH]/[NAD+ ] ratio to regulate genes for central metabolism, and a variety of metabolic processes in Gram-positive bacteria. We decipher and validate four new members of the Rex regulon in Caldicellulosiruptor bescii; a gene encoding a class V aminotransferase, the HydG FeFe Hydrogenase maturation protein, an oxidoreductase, and a gene encoding a hypothetical protein. Structural genes for the NiFe and FeFe hydrogenases, pyruvate:ferredoxin oxidoreductase, as well as the rex gene itself are also members of this regulon, as has been predicted previously in different organisms. A C. bescii rex deletion strain constructed in an ethanol-producing strain made 54% more ethanol (0.16 mmol/L) than its genetic parent after 36 hr of fermentation, though only under nitrogen limited conditions. Metabolomic interrogation shows this rex-deficient ethanol-producing strain synthesizes other reduced overflow metabolism products likely in response to more reduced intracellular redox conditions and the accumulation of pyruvate. These results suggest ethanol production is strongly dependent on the native intracellular redox state in C. bescii, and highlight the combined promise of using this gene and manipulation of culture conditions to yield strains capable of producing ethanol at higher yields and final titer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。