Diploidy confers genomic instability in Schizosaccharomyces pombe

二倍体导致裂殖酵母基因组不稳定性

阅读:6
作者:Joshua M Park, Daniel F Pinski, Susan L Forsburg

Abstract

Whole genome duplication, or polyploidy, has been implicated in driving genome instability and tumorigenesis. Recent studies suggest that polyploidy in tumors promotes cancer genome evolution, progression, and chemoresistance resulting in worse prognosis of survival. The mechanisms by which whole genome duplications confer genome instability are not yet fully understood. In this study, we use Schizosaccharomyces pombe (fission yeast) diploids to investigate how whole genome duplication affects genome maintenance and response to stress. We find that S. pombe diploids are sensitive to replication stress and DNA damage, exhibit high levels of loss of heterozygosity, and become dependent on a group of ploidy-specific lethal genes for viability. These findings are observed in other eukaryotic models suggesting conserved consequences of polyploidy. We further investigate ploidy-specific lethal genes by depleting them using an auxin-inducible degron system to elucidate the mechanisms of genome maintenance in diploids. Overall, this work provides new insights on how whole genome duplications lead to genome instability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。