Development of bifunctional stilbene derivatives for targeting and modulating metal-amyloid-β species

开发用于靶向和调节金属-淀粉样蛋白-β 物种的双功能二苯乙烯衍生物

阅读:6
作者:Joseph J Braymer, Jung-Suk Choi, Alaina S DeToma, Chen Wang, Kisoo Nam, Jeffrey W Kampf, Ayyalusamy Ramamoorthy, Mi Hee Lim

Abstract

Amyloid-β (Aβ) peptides and their metal-associated aggregated states have been implicated in the pathogenesis of Alzheimer's disease (AD). Although the etiology of AD remains uncertain, understanding the role of metal-Aβ species could provide insights into the onset and development of the disease. To unravel this, bifunctional small molecules that can specifically target and modulate metal-Aβ species have been developed, which could serve as suitable chemical tools for investigating metal-Aβ-associated events in AD. Through a rational structure-based design principle involving the incorporation of a metal binding site into the structure of an Aβ interacting molecule, we devised stilbene derivatives (L1-a and L1-b) and demonstrated their reactivity toward metal-Aβ species. In particular, the dual functions of compounds with different structural features (e.g., with or without a dimethylamino group) were explored by UV-vis, X-ray crystallography, high-resolution 2D NMR, and docking studies. Enhanced bifunctionality of compounds provided greater effects on metal-induced Aβ aggregation and neurotoxicity in vitro and in living cells. Mechanistic investigations of the reaction of L1-a and L1-b with Zn(2+)-Aβ species by UV-vis and 2D NMR suggest that metal chelation with ligand and/or metal-ligand interaction with the Aβ peptide may be driving factors for the observed modulation of metal-Aβ aggregation pathways. Overall, the studies presented herein demonstrate the importance of a structure-interaction-reactivity relationship for designing small molecules to target metal-Aβ species allowing for the modulation of metal-induced Aβ reactivity and neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。