Lipophilic Arginine Esters: The Gateway to Preservatives without Side Effects

亲脂性精氨酸酯:无副作用的防腐剂之门

阅读:6
作者:Iram Shahzadi, Aamir Jalil, Mulazim Hussain Asim, Andrea Hupfauf, Ronald Gust, Philipp Alexander Nelles, Ludwig Knabl, Andreas Bernkop-Schnürch

Abstract

This study hypothesized that long carbon chain cationic arginine (Arg) esters can be considered as toxicologically harmless preservatives. Arg-esters with C18 and C24 carbon chains, namely, arginine-oleate (Arg-OL) and arginine-decyltetradecanoate (Arg-DT), were synthesized. Structures were confirmed by FT-IR, 1H NMR, and mass spectroscopy. Both Arg-esters were tested regarding hydrophobicity in terms of log Poctanol/water, critical micelle concentration (CMC), biodegradability, cytotoxicity, hemolysis, and antimicrobial activity against Escherichiacoli (E. coli), Staphylococcusaureus (S. aureus), Bacillussubtilis (B. subtilis), and Enterococcusfaecalis (E. faecalis). Log Poctanol/water of arginine was raised from -1.9 to 0.3 and 0.6 due to the attachment of C18 and C24 carbon chains, respectively. The critical micelle concentration of Arg-OL and Arg-DT was 0.52 and 0.013 mM, respectively. Both Arg-esters were biodegradable by porcine pancreatic lipase. In comparison to the well-established antimicrobials, benzalkonium chloride (BAC) and cetrimide, Arg-esters showed significantly less cytotoxic and hemolytic activity. Both esters exhibited pronounced antimicrobial properties against Gram-positive and Gram-negative bacteria comparable to that of BAC and cetrimide. The minimum inhibitory concentration (MIC) of Arg-esters was <50 μg mL-1 against all tested microbes. Overall, results showed a high potential of Arg-esters with long carbon chains as toxicologically harmless novel preservatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。