METTL3-Mediated m6A Modification of ISG15 mRNA Regulates Doxorubicin-Induced Endothelial Cell Apoptosis

METTL3 介导的 ISG15 mRNA m6A 修饰调控阿霉素诱导的内皮细胞凋亡

阅读:6
作者:Dongdong Jian, Han Li, Chenqiu Wang, Fang Li, Runhua Li, Shouyi Jin, Jia Shen, Jiamian Chen, Wanjun Zhang, Ling Pan, Wengong Wang, Hao Tang, Liguo Jian, Datun Qi

Abstract

N6-adenosine methylation (m6A) of RNA is involved in the regulation of various diseases. However, its role in chemotherapy-related vascular endothelial injury has not yet been elucidated. We found that methyltransferase-like 3 (METTL3) expression was significantly reduced during doxorubicin (DOX)-induced apoptosis of vascular endothelial cells both in vivo and in vitro, and that silencing of METTL3 further intensified this process. Combined transcriptome and proteome sequencing analyses revealed that the expression levels of interferon-stimulated gene 15 (ISG15) mRNA and protein significantly increased after METTL3 silencing. Methylated RNA immunoprecipitation (meRIP)-quantitative polymerase chain reaction (qPCR) and mRNA stability assays confirmed that METTL3 regulates the expression of ISG15 by methylating the 1,014,147 site on ISG15 RNA, thereby decreasing ISG15 mRNA levels. Silencing ISG15 significantly suppressed DOX-induced endothelial cell apoptosis and dysfunction caused by METTL3 silencing. In summary, our study revealed that METTL3-mediated methylation of ISG15 mRNA is involved in DOX-induced endothelial cell apoptosis and explored potential therapeutic targets for alleviating chemotherapy-associated vascular injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。