Positively and negatively modulating cell adhesion to type I collagen via peptide grafting

通过肽移植正向和负向调节细胞对 I 型胶原蛋白的粘附

阅读:8
作者:Gary A Monteiro, Anthony V Fernandes, Harini G Sundararaghavan, David I Shreiber

Abstract

The biophysical interactions between cells and type I collagen are controlled by the level of cell adhesion, which is dictated primarily by the density of ligands on collagen and the density of integrin receptors on cells. The native adhesivity of collagen was modulated by covalently grafting glycine-arginine-glycine-aspartic acid-serine (GRGDS), which includes the bioactive RGD sequence, or glycine-arginine-aspartic acid-glycine-serine (GRDGS), which includes the scrambled RDG sequence, to collagen with the hetero-bifunctional coupling agent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The peptide-grafted collagen self-assembled into a fibrillar gel with negligible changes in gel structure and rheology. Rat dermal fibroblasts (RDFs) and human smooth muscle cells demonstrated increased levels of adhesion on gels prepared from RGD-grafted collagen, and decreased levels of adhesion on RDG-grafted collagen. Both cell types demonstrated an increased ability to compact free-floating RGD-grafted collagen gels, and an impaired ability to compact RDG-grafted gels. RDF migration on and within collagen was increased with RDG-grafted collagen and decreased with RGD-grafted collagen, and dose-response experiments indicated a biphasic response of RDF migration to adhesion. Smooth muscle cells demonstrated similar, though not statistically significant, trends. The ability to both positively and negatively modulate cell adhesion to collagen increases the versatility of this natural biomaterial for regenerative therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。