Chaperone-like N-methyl peptide inhibitors of polyglutamine aggregation

分子伴侣类 N-甲基肽聚谷氨酰胺聚集抑制剂

阅读:8
作者:Jennifer D Lanning, Andrew J Hawk, Johnmark Derryberry, Stephen C Meredith

Abstract

Polyglutamine expansion in the exon 1 domain of huntingtin leads to aggregation into beta-sheet-rich insoluble aggregates associated with Huntington's disease. We assessed eight polyglutamine peptides with different permutations of N-methylation of backbone and side chain amides as potential inhibitors of polyglutamine aggregation. Surprisingly, the most effective inhibitor, 5QMe(2) [Anth-K-Q-Q(Me(2))-Q-Q(Me(2))-Q-CONH(2), where Anth is N-methylanthranilic acid and Q(Me(2)) is side chain N-methyl Q], has only side chain methylations at alternate residues, highlighting the importance of side chain interactions in polyglutamine fibrillogenesis. Above a 1:1 stoichiometric ratio, 5QMe(2) can completely prevent fibrillation of a synthetic aggregating peptide, YAQ(12)A; it also shows significant inhibition at substoichiometric ratios. Surface plasmon resonance (SPR) measurements show a moderate K(d) with very fast k(on) and k(off) values. Sedimentation equilibrium analytical ultracentrifugation indicates that 5QMe(2) is predominantly or entirely monomeric at concentrations of <or=1 mM and that it forms a 1:1 stoichiometric complex with a fibril-forming target, YAQ(12)A. 5QMe(2) inhibits not only nucleation of YAQ(12)A but also fibril extension, as shown by the fact that it also inhibits seeded fibril growth where the nucleation steps are bypassed. 5QMe(2) acts on its targets only when they are in the PPII-like conformation, but not after they undergo a transition to beta-sheets. Thus, 5QMe(2) does not disassemble preformed YAQ(12)A; this contrasts with our previously described, backbone N-methylated inhibitors of beta-amyloid aggregation [Gordon, D. J., et al. (2001) Biochemistry 40, 8237-8245; Gordon, D. J., et al. (2002) J. Pept. Res. 60, 37-55]. The mode of action of 5QMe(2) is reminiscent of that of chaperones, because it binds and releases its targets very rapidly and maintains them in a nonaggregation-prone, monomeric state, in this case, the polyproline II (PPII)-like conformation, as shown by circular dichroism spectroscopy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。