Polysaccharide Coating of Gelatin Gels for Controlled BSA Release

明胶凝胶的多糖涂层可控制 BSA 释放

阅读:5
作者:Jimena S Gonzalez, Carmen Mijangos, Rebeca Hernandez

Abstract

Self-assembly of natural polymers constitute a powerful route for the development of functional materials. In particular, layer-by-layer (LBL) assembly constitutes a versatile technique for the nanostructuration of biobased polymers into multilayer films. Gelatin has gained much attention for its abundance, biodegradability, and excellent gel-forming properties. However, gelatin gels melt at low temperature, thus limiting its practical application. With respect to the above considerations, here, we explored the potential application of gelatin gels as a matrix for protein delivery at physiological temperature. A model protein, bovine serum albumin (BSA), was encapsulated within gelatin gels and then coated with a different number of bilayers of alginate and chitosan (10, 25, 50) in order to modify the diffusion barrier. The coated gel samples were analyzed by means of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) and confocal Raman spectroscopy, and it was found that the multilayer coatings onto polymer film were interpenetrated to some extent within the gelatin. The obtained results inferred that the coating of gelatin gels with polysaccharide multilayer film increased the thermal stability of gelatin gels and modulated the BSA release. Finally, the influence of a number of bilayers onto the drug release mechanism was determined. The Ritger-Peppas model was found to be the most accurate to describe the diffusion mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。