A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica

解脂耶氏酵母高水平生产 β-紫罗兰酮的模块化途径工程策略

阅读:6
作者:Yanping Lu, Qingyu Yang, Zhanglin Lin, Xiaofeng Yang

Background

The GRAS and oleaginous yeast Yarrowia lipolytica (Y. lipolytica) is an attractive cell factory for the production of chemicals and biofuels. The production of many natural products of commercial interest have been investigated in this cell factory by introducing heterologous biosynthetic pathways and by modifying the endogenous pathways. However, since natural products anabolism involves long pathways and complex regulation, re-channelling carbon into the product of target compounds is still a cumbersome work, and often resulting in low production performance.

Conclusions

An efficient β-ionone producing GRAS Y. lipolytica platform was constructed by combining integrated overexpressed of heterologous and native genes. A modular engineering strategy involved the optimization pathway and fermentation condition was investigated in the engineered strain and the highest β-ionone titer reported to date by a cell factory was achieved. This effective strategy can be adapted to enhance the biosynthesis of other terpenoids in Y. lipolytica.

Results

In this work, the carotenogenic genes contained carB and bi-functional carRP from Mucor circinelloides and carotenoid cleavage dioxygenase 1 (CCD1) from Petunia hybrida were introduced to Y. lipolytica and led to the low production of β-ionone of 3.5 mg/L. To further improve the β-ionone synthesis, we implemented a modular engineering strategy for the construction and optimization of a biosynthetic pathway for the overproduction of β-ionone in Y. lipolytica. The strategy involved the enhancement of the cytosolic acetyl-CoA supply and the increase of MVA pathway flux, yielding a β-ionone titer of 358 mg/L in shake-flask fermentation and approximately 1 g/L (~ 280-fold higher than the baseline strain) in fed-batch fermentation. Conclusions: An efficient β-ionone producing GRAS Y. lipolytica platform was constructed by combining integrated overexpressed of heterologous and native genes. A modular engineering strategy involved the optimization pathway and fermentation condition was investigated in the engineered strain and the highest β-ionone titer reported to date by a cell factory was achieved. This effective strategy can be adapted to enhance the biosynthesis of other terpenoids in Y. lipolytica.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。