Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells

利用噬菌体溶菌素的高亲和力细胞壁结合域固定和分离细菌细胞

阅读:7
作者:Jan W Kretzer, Rainer Lehmann, Mathias Schmelcher, Manuel Banz, Kwang-Pyo Kim, Corinna Korn, Martin J Loessner

Abstract

Immobilization and magnetic separation for specific enrichment of microbial cells, such as the pathogen Listeria monocytogenes, depends on the availability of suitable affinity molecules. We report here a novel concept for the immobilization and separation of bacterial cells by replacing antibodies with cell wall-binding domains (CBDs) of bacteriophage-encoded peptidoglycan hydrolases (endolysins). These polypeptide modules very specifically recognize and bind to ligands on the gram-positive cell wall with high affinity. With paramagnetic beads coated with recombinant Listeria phage endolysin-derived CBD molecules, more than 90% of the viable L. monocytogenes cells could be immobilized and recovered from diluted suspensions within 20 to 40 min. Recovery rates were similar for different species and serovars of Listeria and were not affected by the presence of other microorganisms. The CBD-based magnetic separation (CBD-MS) procedure was evaluated for capture and detection of L. monocytogenes from artificially and naturally contaminated food samples. The CBD separation method was shown to be superior to the established standard procedures; it required less time (48 h versus 96 h) and was the more sensitive method. Furthermore, the generalizability of the CBD-MS approach was demonstrated by using specific phage-encoded CBDs specifically recognizing Bacillus cereus and Clostridium perfringens cells, respectively. Altogether, CBD polypeptides represent novel and innovative tools for the binding and capture of bacterial cells, with many possible applications in microbiology and diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。