Novel Spatially Asymmetric Copper Bismuthate-Mediated Augmentation of Energy Conversion to Realize "Three-Step" Tumor Suppression

新型空间不对称铋酸铜介导增强能量转换实现“三步”肿瘤抑制

阅读:6
作者:Jiarui Wang, Haoqin Zheng, Guangyao Hu, Xujian Yang, Hongpeng You, Lile Dong, Shuyan Song

Abstract

The generally undesirable bandgap and electron-hole complexation of inorganic sonosensitizers limit the efficiency of reactive oxygen species (ROS) generation, affecting the effectiveness of sonodynamic therapy (SDT). Comparatively, the novel polyvinylpyrrolidone-modified copper bismuthate (PCBO) sonosensitizers are manufactured for a "three-step" SDT promotion. In brief, first, the strong hybridization between Bi 6s and O 2p orbitals in PCBO narrows the bandgap (1.83 eV), facilitating the rapid transfer of charge carriers. Additionally, nonequivalent [CuO4]6- layers reduce crystal symmetry, confer PCBO unique piezoelectricity, and improve electron-hole separation under ultrasonic (US) excitation. This allows PCBO to convert US energy into chemical energy to produce ROS, achieving the accumulation of abundant ROS, resulting in apoptosis and tumor suppression. Concurrently, PCBO also acts as a glutathione scavenger to reduce tumor antioxidant capacity and improve efficacy. To the best of authors understanding, this study reveals PCBO as an innovative piezoelectric sonosensitizer and provides a meaningful paradigm for designing energy conversion strategies for tumor suppression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。