Intermediate Transfer Rates and Solid-State Ion Exchange are Key Factors Determining the Bifunctionality of In2O3/HZSM-5 Tandem CO2 Hydrogenation Catalyst

中间转移速率和固态离子交换是决定 In2O3/HZSM-5 串联 CO2 加氢催化剂双功能性的关键因素

阅读:9
作者:Fatima Mahnaz, Jasan Robey Mangalindan, Balaji C Dharmalingam, Jenna Vito, Yu-Ting Lin, Mustafa Akbulut, Jithin John Varghese, Manish Shetty

Abstract

Identifying the descriptors for the synergistic catalytic activity of bifunctional oxide-zeolite catalysts constitutes a formidable challenge in realizing the potential of tandem hydrogenation of CO2 to hydrocarbons (HC) for sustainable fuel production. Herein, we combined CH3OH synthesis from CO2 and H2 on In2O3 and methanol-to-hydrocarbons (MTH) conversion on HZSM-5 and discerned the descriptors by leveraging the distance-dependent reactivity of bifunctional In2O3 and HZSM-5 admixtures. We modulated the distance between redox sites of In2O3 and acid sites of HZSM-5 from milliscale (∼10 mm) to microscale (∼300 μm) and observed a 3-fold increase in space-time yield of HC and CH3OH (7.5 × 10-5 molC gcat-1 min-1 and 2.5 × 10-5 molC gcat-1 min-1, respectively), due to a 10-fold increased rate of CH3OH advection (1.43 and 0.143 s-1 at microscale and milliscale, respectively) from redox to acid sites. Intriguingly, despite the potential of a three-order-of-magnitude enhanced CH3OH transfer at a nanoscale distance (∼300 nm), the sole product formed was CH4. Our reactivity data combined with Raman, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) revealed the occurrence of solid-state-ion-exchange (SSIE) between acid sites and Inδ+ ions, likely forming In2O moieties, inhibiting C-C coupling and promoting CH4 formation through CH3OH hydrodeoxygenation (HDO). Density functional theory (DFT) calculations further revealed that CH3OH adsorption on the In2O moiety with preadsorbed and dissociated H2 forming an H-In-OH-In moiety is the likely reaction mechanism, with the kinetically relevant step appearing to be the hydrogenation of the methyl species. Overall, our study revealed that efficient CH3OH transfer and prevention of ion exchange are the key descriptors in achieving catalytic synergy in bifunctional In2O3/HZSM-5 systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。