Hydrogen sulphide suppresses human atrial fibroblast proliferation and transformation to myofibroblasts

硫化氢抑制人心房成纤维细胞增殖和向肌成纤维细胞转化

阅读:6
作者:Jingwei Sheng, Winston Shim, Heming Wei, Sze Yun Lim, Reginald Liew, Tien Siang Lim, Boon Hean Ong, Yeow Leng Chua, Philip Wong

Abstract

Cardiac fibroblasts are crucial in pathophysiology of the myocardium whereby their aberrant proliferation has significant impact on cardiac function. Hydrogen sulphide (H2S) is a gaseous modulator of potassium channels on cardiomyocytes and has been reported to attenuate cardiac fibrosis. Yet, the mechanism of H2S in modulating proliferation of cardiac fibroblasts remains poorly understood. We hypothesized that H2S inhibits proliferative response of atrial fibroblasts through modulation of potassium channels. Biophysical property of potassium channels in human atrial fibroblasts was examined by whole-cell patch clamp technique and their cellular proliferation in response to H2S was assessed by BrdU assay. Large conductance Ca(2+)-activated K(+) current (BK(Ca)), transient outward K(+) current (I(to)) and inwardly rectifying K(+) current (IK(ir)) were found in human atrial fibroblasts. Current density of BK(Ca) (IC50 = 69.4 μM; n = 6), I(to) (IC50 = 55.1 μM; n = 6) and IK(ir) (IC50 = 78.9 μM; n = 6) was significantly decreased (P < 0.05) by acute exposure to NaHS (a H2S donor) in atrial fibroblasts. Furthermore, NaHS (100-500 μM) inhibited fibroblast proliferation induced by transforming growth factor-β1 (TGF-β1; 1 ng/ml), Ang II (100 nM) or 20% FBS. Pre-conditioning of fibroblasts with NaHS decreased basal expression of Kv4.3 (encode I(to)), but not KCa1.1 (encode BK(Ca)) and Kir2.1 (encode IK(ir)). Furthermore, H2S significantly attenuated TGF-β1-stimulated Kv4.3 and α-smooth muscle actin expression, which coincided with its inhibition of TGF-β-induced myofibroblast transformation. Our results show that H2S attenuates atrial fibroblast proliferation via suppression of K(+) channel activity and moderates their differentiation towards myofibroblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。