Additively Manufactured Zn-2Mg Alloy Porous Scaffolds with Customizable Biodegradable Performance and Enhanced Osteogenic Ability

增材制造的 Zn-2Mg 合金多孔支架,具有可定制的生物降解性能和增强的成骨能力

阅读:6
作者:Xuan Wang, Aobo Liu, Zhenbao Zhang, Dazhong Hao, Yijie Liang, Jiabao Dai, Xiang Jin, Huanze Deng, Yantao Zhao, Peng Wen, Yanfeng Li

Abstract

The combination of bioactive Zn-2Mg alloy and additively manufactured porous scaffold is expected to achieve customizable biodegradable performance and enhanced bone regeneration. Herein, Zn-2Mg alloy scaffolds with different porosities, including 40% (G-40-2), 60% (G-60-2), and 80% (G-80-2), and different unit sizes, including 1.5 mm (G-60-1.5), 2 mm (G-60-2), and 2.5 mm (G-60-2.5), are manufactured by a triply periodic minimal surface design and a reliable laser powder bed fusion process. With the same unit size, compressive strength (CS) and elastic modulus (EM) of scaffolds substantially decrease with increasing porosities. With the same porosity, CS and EM just slightly decrease with increasing unit sizes. The weight loss after degradation increases with increasing porosities and decreasing unit sizes. In vivo tests indicate that Zn-2Mg alloy scaffolds exhibit satisfactory biocompatibility and osteogenic ability. The osteogenic ability of scaffolds is mainly determined by their physical and chemical characteristics. Scaffolds with lower porosities and smaller unit sizes show better osteogenesis due to their suitable pore size and larger surface area. The results indicate that the biodegradable performance of scaffolds can be accurately regulated on a large scale by structure design and the additively manufactured Zn-2Mg alloy scaffolds have improved osteogenic ability for treating bone defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。