Controlled Release of Small Molecules for Cardiac Differentiation of Pluripotent Stem Cells

控制释放小分子促进多能干细胞向心脏分化

阅读:6
作者:Christopher J Tsao, Francesca Taraballi, Laura Pandolfi, Aaron J Velasquez-Mao, Rodrigo Ruano, Ennio Tasciotti, Jeffrey G Jacot

Abstract

Induced pluripotent stem cells (iPSCs) have been shown to differentiate to functional cardiomyocytes (CM) with high efficiency through temporally controlled inhibition of the GSK3/Wnt signaling pathways. In this study, we investigated the ability of temporally controlled release of GSK3/Wnt small-molecule inhibitors to drive cardiac differentiation of iPSC without manual intervention. Porous silica particles were loaded with GSK3 inhibitor CHIR99021 or Wnt inhibitor IWP2, and the particles containing IWP2 were coated with 5 wt% poly(lactic-co-glycolic acid) 50:50 to delay release by ∼72 h. iPSCs reprogrammed through mRNA transfection were cultured with these particles up to 30 days. High-performance liquid chromatography suggests a burst release of CHIR99021 within the first 24 h and a delayed release of IWP2 after 72 h. Annexin V/propidium iodide staining did not show a significant effect on apoptosis or necrosis rates. Cultured cells upregulated both early (Nkx 2.5, Isl-1) and late (cTnT, MHC, Cx43) cardiac markers, assayed with a quantitative real-time polymerase chain reaction, and began spontaneous contraction at 3.0 ± 0.6 Hz at 15-21 days after the start of differentiation. CM had clear sarcomeric striations when stained for β-myosin heavy chain, and showed expression and punctate membrane localization of gap junction protein Connexin43. Calcium and voltage-sensitive imaging showed both action potential and calcium transients typical of immature CM. This study showed that the cardiac differentiation of pluripotent stem cells can be directed by porous silica vectors with temporally controlled release of small-molecule inhibitors. These results suggest methods for automating and eliminating variability in manual maintenance of inhibitor concentrations in the differentiation of pluripotent stem cells to CM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。